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A Finite Element Method 
for First Order Hyperbolic Equations* 

By Garth A. Baker 

Abstract. A class of finite element methods is proposed for first order hyperbolic 

equations. The expository example chosen is of a single equation in one space di- 

mension with constant coefficients. 

Optimal L2 error estimates are derived for both approximations continuous in 

the time variable and an approximation scheme discrete in time. 

1. Introduction. In this work, two finite element schemes for a mixed initial- 
value boundary value problem for a single first order hyperbolic equation in one space 

dimension are proposed, using a nonstandard variational formulation. 
The results are obtainable for the corresponding Cauchy problem and for more 

general first order hyperbolic systems. The simple example chosen here is for ease of 
exposition. 

The schemes fall in analogy with the so-called H 1 Galerkin methods proposed 
by Rachford- and Wheeler [5] for two point boundary value problems. 

In this work, the Galerkin approximation is obtained by the use of specially 

chosen spaces of trial functions and test functions in a weak-weak formulation of the 

boundary value problem. The above spaces are chosen to be compatible with this 

variational formulation. 
The first scheme produces an approximation continuous in the time variable with 

optimal L2 error estimates of O(hr), where the solution is approximated in a space of 

discontinuous (nonconforming) piecewise polynomial functions of degree r - 1, r > 1. 

Secondly, a Crank-Nicolson type time discretization yields approximations discrete 

in time with again optimal L2 error estimates of O(h' + T2), using the above space of 

functions: iT denotes the discrete time step. The method is unconditionally convergent 
and stable. 

2. Notation. 
2.1. Function Spaces. Let Q2 = (0, 1), and let 0 < T < oo be fixed. For s > 0, 

Hs(&2) will denote the Sobolev space W(92) of real-valued functions on Q2, and 11 Ils 
will denote the corresponding norm. 

For definitions and the relevant properties of these spaces, see for example [4]. 
For s < 0 the spaces Hs(&2) are defined following [6], as the completion of C'(Q2), the 

set of infinitely differentiable functions on Q2, with respect to the norm: 

11 11 uIf v dx I 
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For v a mapping v: [0, TI -- Hs(92), the following norms are defined, 

IIV12 s- (Ii s* )l 

and 

Ilv ll ll =s SUP IIV( * , t)II . 

Following [4], we also adopt the notation 

LP(O, T; Hs(92)) = {v: [0, T] -- Hs(92): Illlpi s <01 p =2, ??. 

We note also that H?(Q2) = L2(Q2), the Hilbert space of real-valued functions 

square integrable with respect to Lebesgue measure on Q2. We shall write 

(u, v)= uvdx, u, vEEL2(2). 

Also, we define the space 

H(92) = {v e H1(92): v(l) 01. 

2.2. The Boundary Value Problem. We shall be interested in approximating the 

solution of the following mixed initial-value boundary value problem. A function 

u: Q2 x [0, T1 -* R is sought satisfying 

Iati au laa(x,t)+ a(x t)=fx, ), 
(x,t)GE Qx (O,TI, 

(2.1) u(0,t) g(t), t>O, 

u(x, 0) = uo(x), x E 2. 

The functions f, g and uo are given. Henceforth it will be assumed that f, g and 

uo are such that a unique solution u exists, for t > 0. In the appropriate places to 

follow, precise conditions on the smoothness of u sufficient to guarantee the conver- 

gence results will be imposed. 
Define the following bilinear form b( *,^): L2(Q2) x H'(92) -- R' by 

(2.2) b(u, v) =-(u, av/ax). 

Observe that the boundary value problem (2.1) has the following weak-weak 

formulation: u E L2(0, T; L2(2)) satisfies 

((au/at)( * , t), v) + b(u( * , t), v) = (f( , t), v) + g(t)v(O) 

for all v E H(E), t > 0. 

2.3. The Finite-Dimensional Function Spaces. Let ll(Q) denote the set of parti- 

tions A of Q2, of the form 

A:0=xO<XI< <XNlx forN>1. 

Given A E H(QZ), set h = maxl6i,Nxi -Xi-l 

For D C Q2 and integer r > 0, Pr(D) will denote the set of polynomials of degree 
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< r on D. We now define certain finite-dimensional function spaces relative to A, 
which will be used to obtain the approximations. 

For r > 1, define 

G (Q) = {v: v CP (x lx i), i= 1, 2, ...,N}, 

and 

ffA(Q)- {v C C(Q): v C P,(xi- 1, xi), i =1, 2, . . .N, v(l ) = 0}- 

It is easily see that G,2(Q) is a subspace of L2(Q), that HI,(2) is a subspace of 
0 

H(2), and that 

Dimension G' (Q) = Dimension Ho,(Q) = Nr. 

Let {?al a2 .a.. , ad} be a basis for Gr,(Q), and let ? ff2l . . 2 . d} be a basis 

for HI(2), where d = d(r, A) = Nr. 

The following simple result will be needed. 

LEMMA 2.1. The matrix G -((aj, IiATj=-1,2,..._d is nonsingular. 

Proof. We show that if iu = (, u 2 . d) E Rd, with uk 0, then there 

exists a v = (vi 1, v2- ... , v-) T Rd such that vTGiG > 0. 

To this end, let uf C Rd, u # 0. Observe that 

v TG u = (u, v) for all v E Rd, 

where 

d d 

u = u~ckyk and v= u Vkfk. 
k=1 k=1 

Let j = min{i: u t 0 on 
(xi1, 

xi)}. Now suppose that x X u(x) dx #0. Then 

define 

v(x) jx u(s) ds, O < x < xi, 

0 , X j < X < . 
Oir (Q). Hence v 

= 
Ed 

d ?; 1 
Then v C H,(Q). Hence v = 1kz1Vk k, for some v C Rd, and 

T = (, v) u(x)v(x) dx 

= T (x)v(x) dx = - tv(0)12 | u(s) ds >0. 

Now if f1xi u(s) ds = 0, then define 
1j- 1 

U(Xi_ +) - U(Xj - 0 < X < Xj_ 

v(x) = U(x) - u(xi-), Xj_ 1 < xj, 

O, xi ?x <1. 

Again v C kS(Q), and 
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vTGU^ = (u, v) u(x)[u(x) - u(xj-)] dx 

xi-'~~~~~~~~~~~~~~ 

= rfI [u(x)]2 dx - u(xj-4I u(x) dx = (X)]2 dX > 0. 

Finally, if 
Gu= 0 for some u CRd, u I0, 

then 
v GuO= O for all v C Rd, 

which is not possible. Hence G is nonsingular. 
The following result is easily obtainable by appropriate local Taylor expansions. 
LEMMA 2.2. There exists a constant 0 < C* < oo, such that for all u ? Hs(2), 

INF llu - X!!o < C*hs !u 1s, 0 < s < r, 
XEEG rv( 

and for all u ? Hs(?) fl H(Q), 

INF lIu - Xll1 < C*hs- 1 lu ls, 1 < s <r+ 1. 

C* is independent of A (and h) but depends on r. 
The bilinear for b( -, * ) defined by (2.2) possesses certain properties on the sub- 

spaces G,(Q) and H(2) which we now display. 
LEMMA 2.3. Let b( -, ) be defined by (2.2), then 

(2.3) Ib(u, v)I S Ilu!!0 tv!1, 

for all u ? L2(Q2), v ? H1(2), and 

(2.4) SUP Ib(u, v)I > !!u 11 , 
veHr (Q2); 11 vfl1 '21 

for all u ? G,(Q). 
Proof Clearly (2.3) follows from Schwarz' inequality. To derive (2.4), let 

u ? Gr (2). Then define 

(2.5) v(x) =4 u(s)ds, x e Q. 

Then v C H,,(Q), and by Schwarz' inequality, 

(2.6) tv!I1 < VIIU10.1 

From (2.2) and (2.6), 

(2.7) b(u, v/!!v!!1) = IIvII 1(- u, aV/ax) 

= IIu 12 IIVII I 
> (1/,' ) lU!!0 

The result (2.4) now follows. 

3. A Projection Theorem. The following theorem will be used in obtaining the 
error estimates. The result is motivated by the analogous result in [1]. 
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THEOREM 3.1. Let G and H be two normed linear spaces with norms 11- IIG and 

11 " 1H,, respectively. Let G be a nonempty linear subspace of G, and H a nonempty 
linear subspace of H, with 

DIMENSION G = DIMENSION H < 00. 

Let b( , ): G x H R1 be a bilinear mapping satisfying 

(3.1) Ib(u, v)I < C1 lu 11G llvllH, 

for all u ? G, v ? H, where C1 < oo is a constant. 
There exists a constant C2 > 0 such that 

(3.2) SUP Ib(u, v)I > C2 llu IIG for all u ? G. 
vE(H; vII1 H ?- 1 

Then if uo ? G, there exists a unique uo ? G such that 

(3.3) b(0, v) = b(u0, v) for all v C H, 

and 

(3.4) IIU-U II11 < (I + C C- ) INFG Illu XI 

Proof The Eq. (3.3) is equivalent to a system of d linear algebraic equations, 
the unknowns being the d coefficients of U0 relative to the chosen basis for G, where 
d = DIMENSION G = DIMENSION H. 

The condition (3.2) dictates that the associated matrix is nonsingular. Hence uo 
exists uniquely. 

The estimate (3.4) may be derived as follows. 
Since G is a finite-dimensional linear subspace of the normed linear space G, 

there exists a ? C G such that 

(3.5) lluo - WIIG = INF 1luo XIIG- 

Now from (3.2), (3.3) and (3.1), 

IIUO -IIG AC7' SUP Ib(io - v)I 
(3.6) vEH;I11v11 <?1 

= C2 1 SUP Ib(uO - v)I < C1C2l IluO - II 
vEEH;ll1lv A1< 

Hence (3.6) gives 

llo-uo G o llO 11 G + 4 UO 11 G 

< (1 + C1C2 )IIu0 - 

= (1 + C C71) INF flu0 XIIG. 
X&G 

An application of Theorem 3.1 yields: 
THEOREM 3.2. Let u be the solution of the boundary value problem (2.1); then 

for each ti A He () there exists a unique mapping T: [0, fl > G,(Q) which satisfies 
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(3.7) b(,( , t), v) = b(u( , t), v), 

for all v E H,(Q} Furthermore, iffor some integer k > 0, 

akU/atk E LP(O T; Hs(Q)), then akCO,/atk 
E LP(O, T; G (Q2)), 

and there exists a constant C** independent of h such that 

(3.8) 11 l(ak/atk) [U - W I1I Ip C**hs+JIIlaku/atk 11 0 ?s ? r, O S j S 1. 

Proof. The existence and uniqueness of an o: [0, T1 G,(Q2) satisfying (3.7) 
follows from Lemma 2.3 and Theorem 3.1 by making the identification G = L2), 
H = H(2), G = GA(2), H = HX(2). The estimate (3.8) for j = 0, follows from (3.4) 
and Lemma 2.2. We now show (3.8) for j = 1. Set e = u - co., and let E e C(2). 
Now define 

rx 
(3.9) gi(x) =-{1 (s)ds, x EQ; 

then i E- C(2) nl H(2), and 

(3.10) 1lp 112 S\/2 110Il. 

Now let A, E H,(2) be such that 

(3.11) 114 - OA 11 S C*h ll 112 < VC*h 11IA1I 

Then from (3.9), (3.7), and (3.11), 

(e,) = b(e, ) = b(e, 4 - OA) 

< llellollP - Oh 111 v< /,C*h ll lil le llo; 
hence 

Ilel 1 SU < y2C*h Ilie 110. 
0eC0(9)4;0o 110 

The result now follows. 

4. The Continuous Time Galerkin Approximation. 
THEOREM 4.1. Let u be the solution of the problem (2.1). Then for each 

A E H(f2), there exists a unique mapping UA: [0, f] G,(Q2) satisfying 

(4.1) ((aUA/at)( 
- 

, t), v) + b(UA( * , t), v) = (f( * , t), v) + g(t)v(O) 

for all v E H,(2), t > 0, and 

(4.2) (UA( * , 0), V) = (U0, V) for all v E G,(Q2). 

Furthermore if u E L (0, T; Hr(2)), au/at E L (0, T, Hr- (2)) and a2U/at2 E 
L2(0, T; Hr- 1(2)), then there exists a constant C(T), independent of h, such that 

(4.3) Illu - UA lll. ? C(r)hr IIllullLr ? ? ++ 
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Proof. That UA( -, t) = k lXk(t)ak exists uniquely follows from the fact that 
the Eqs. (4.1). and (4.2) are equivalent to the initial-value problem for the system of d 
linear ordinary differential equations of the first order, 

(4.4) G(dA/dt)(t) + BX(t) = f(t), 0 < t S T, 

(4.5) A _kO) = 

where 

X(t) = (X 1(t)I X2 (t), * . .*, Xd() 

f(t) = (0( *,I t), 01) 0( *,I t), 02), .. * *,( ,t), Od)) 

+ (t)1 (0),g(t)2( ), . . . ,g(t)d()) T, 

Uo = ((U0, on1), (Uo0 g2) . * . , (U a?J)), 

and G, B and A are the d x d matrices G((a1, 03)), 3 = (b(aj, 13)) and A = ((aj, i)), 
i, j = 1, 2, . . . , d. Since A is clearly nonsingular, and from Lemma 2.1, G is non- 

singular, the system.(4.4) and (4.5) has a unique solution. 
The estimate (4.3) may be derived by arguments analogous to those used for 

standard Galerkin methods for parabolic equations found in [6]. 
Let co, be defined by (3.7), and let ?? = u - co, = Ua - coA, and e = u - 

UA. Then from (4.1), (3.7) and (2.3), for any v E H 

((aO/3t)( *,t), v) + b(O( *,t), v) 

= 
(f4 * , t), v) + g(t)v(O) - ((acoa/at)( *, t), v) - b(coA( *, t), v) 

(4.6) 
= (f( * , t), v) 

- 
b(u( 

- , t), v) 
- 

((coA/at)( *, t), v) + g(t)v(O) 

= ((a??/at)( *, t), v), t > 0. 

Now choose 

v(x, t) =(sI t) ds, t > O, x E Q, 

and define 

rx 
(4.7) 0(x, t) X J?S, t) ds, t > O, x GE Q2. 

Then (4.6) becomes 

- poa/ax)( *,t), ^v( *,t) + W? *, t), (ao/at)( *,I t)) 

=((a??/a t) *, t), I^v( *,)) I t > 0, 
or 

^ 
IZi(O,t)12 + 

I d 110( *t)2 = a?( t),^v( , t1 
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Now integrating (4.7) from t = 0 to t = t ? T, 

lk(, * )llo ? l( *, 0)11o + 2ffl a( , t) a , t) dx dt 

= 11, Ollo+ 2(a *,O *, )- 2( an 0 ), 0 )) 

(4 9) ~-21 ( ( * , t), (*,t) dt 

< 114( , O)llg + 4 __t _ - 111001 

+ 2alpl2 
T 

1 1, ? t' 1A 2,- i' 

Now from (4.7), 

(4.10) 11tIlo0 SXif l, 

Hence, using (4.10) in (4.9), 

l )hIg * , ll 611t( , 0)II2 ? }4 00,.i ? 2 K t 

(4.11) 

+ 1111011102 0 0 < - < T. 

On taking the supremum over t in (4.1 1),we get, on using (3.8), 

I&II oo,1 ? o J, < v d-(* , O)I0 + 4 tar 00_ + 2VYT- at2 2,-i 

v/2IIU, ( - , 0) - u0 110 ?+ 11uo - wA( -) 1o) + 4 
a 

1 
at00,-i 

+ 2V'Y +2-2,-I 

-C* *h 2 lu lr + 43t o00,r-i 
+ 2\T- 2,r- 1 

Hence finally again by (3.8), 

lile 11S0l <hIIh01100 ? + hI'hIoi,o 

< C(7)hr ) [[[U Il,r + +l|lc r-1 i;127_ ?C(7)h4hhIuhIL~. 
?r 2,r-1} 

where C = C** MAX {4, 2V7IT}\. This concludes the proof. 
We remark that the definition of UA( *, 0) in Gr(Q) is arbitrary up to being an 

optimal L2 approximation to uo. (4.2) defines one such choice. 
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5. A Discrete Time Galerkin Method. A Crank-Nicolson type Galerkin method 
based on the weak formulation (2.3) is analyzed here. Analogous schemes for parabolic 
equations have been proposed in [2] and [3]. 

Let T = Jr for some integer J > 1. For a sequence {V,}Ij=O C L2(Q2), we define 

aTvn = [-1 vln+l - vn, 

vn+v/2 = ?/2[Vn+l + vn, n = 0, 1, .. .,J-1, 

a2Vn = T-2 [Vn+1 -2Vn + Vn-1], n = 1, 2,... ,J- 1, 

and 

IIIVWIlO = max IIV 110. 

For a mapping V: C[0, 71 L2(Q2), we shall write 

Vn = V ,nr), n =0,1, .. . ,J. 

Throughout the rest of the paper, C will denote a generic constant, not necessarily 
the same in any two places. 

The following result defines a fully discrete Galerkin approximation, and gives 
the error estimates. 

THEOREM 5.1. Let u be the solution of the boundary value problem (2.1), then 

there exists a unique sequence {Unj= 0 C Gr (2) which satisfies 

(5.1) (U?a, X)=(u0, X) for all X E GX(2), 

and 

(5.2) 0 (aTU, X) + b(U+12, x) = (ffn+1/2, X) +gnX() 

for all X E H1(2), n = 0, 1, .. ., J - 1. 

Furthermore if u E L (0, T; Hr(92)), au/a t E L-(0, T; Hr- (Q)), a2u/at2 E 

L2(0, T; Hr-l(f)), a3U/at3 E L-(o, T; H-1(92)), and a4u/at4 E L2(0, T; H-1(2)), 

then there exists a constant C = C(u, 1) such that 

(5.3) max llu( *, nr) - U, ZI0 _ C{hr + T2}. 

Proof Clearly U? E G,(Q) is uniquely defined. Now for n = 0, 1,... , J - 1, 
U 1 + satisfies 

[Un'+ 1 i X]=FnX for all X E H (Q2), 

where [ , ]: G 2(Q) x HR( ) R1 is the bilinear form given by 

[U, x] = (U, X) - (,r2)(U, ax/ax) 

and : HF(Q) R1 is the functional given by 

Fnx = (Un, X) + (TI2)(UAn, aX/ax) + (fnf+ /2 X) + gn+ 1/2X(o) 

Since if U E Gr(Q2) and 
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V(X) = -f U(s) ds, then V E Hr(2), 

and 

[U, VI = (r/2) IIUI2 + 1/21 V(0)12 > (r/2) IIUI1. 

Hence the matrix ([a, Oi] )ij= 1,2,...,d is nonsingular, and so U. exists uniquely, 
n=O, 1, . . .,J. 

We now derive the estimate (5.3). Again let co, E G,(Q) be defined by (3.7), 
and set 7 = u - on' ?>n = U, - cn and en = un - UI. 

From (2.2) it follows that 

(5.4) (aun,, X) + b(un+v2, X) = (fn+1/2 + pn, X) + gn+Y2X(?) T 

for all X E H(Q2), where 

(5.5) ppn = a Un -aun+Y/2/at, n =0, 1, ...,J- 1. 

Hence from (5.2), (3.7) and (5.4), for X E Hr(2) 

(a'rn, X) + b(qn +1/2, X) 

(5.6) ~~~= (fnY , X) + gn+ /2X(0) -(a co,n, X)-b(,on + 2 X 

- (fn+1/2 X) - b(un+Y2 , X) - (aTcn, X) + gn +2 X(O) 

= (a 'r?n 
- 

pn , X), n = 0, 1, J . .,J1. 

We now make the choice 
Px_ 

(5.7) 5n (x) =-farn (s) ds, x e Q . 

Then {j'}^n= C 

Using (5.7) and (5.6), 

_ (an *n) + (qn+f+2 arTn) = (arT?n - pn2 *n) 

or 

(5.8) 1/21*1n(0)j2 + kT-rI(Ilh/n+ h - lb/P hl ) 

=(a rn -P2n, *n), n =, 1, .. ., J- 1. 

Now define 4n(x) = fx[aTr?'n(s) - pn(s)] ds. Then since on (0) = 0, it can be easily 

verified that 

(5.9) liP2 0C IIaOnlax Il_ = llaT?? -p II_1; 

also 

(5.10) (a r??n - pn, -n) = (aon/ax, n) =-(un, a^ n/ax) = (on, arPn). 

Hence if we substitute (5.10) in (5.8), and sum for n = 0 to n = 1 - 1, for some 
1 < 1 < J, then 
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1-1 

lfkl'IIS 1100 112 + 2r (, a ) 
(5.11) n=o 

1- 1 

= 110 012 + 2[(O', ( - ) pO, 40)] ? 2+ 2, ((p, ao -). 
n-1 

From (5.5) one may prove that 

(5.12) IpIll S CT2 1llli3u/at3 11 

and so from (5.9), (5.5) and (3.8), for 0 S n S J - 1, 

lo/n 11 S ciia 'r?n II_ 1 + Cllpn II_ 1 

(5.13) Si3u 
)r Ilaul 2 U 

Also, since 

a n-1 a | [320n (s) apn-1 (s)] ds, 

it follows that 

(5.14) I34n1 IIo S CIIa27?n -aTp 1 _ 

Using (5.14) and (3.8), we obtain 

1 1 

111l2 
I 

< c 2|%ll2 + T |4ualll 

n=1 

(5.15) 

SC}h ||}12,r 12 - 19 2,_1t 

Returning to (5.11) with the estimates (5.13) and (5.15), 

Il112 S' 11? I0II1 + 4I11pIIL0II'L00,0 

+ (-1 )1/2( I-1 12) 

=1 ~~n=l 

S 1100112 +-111 o + 311101112 ? jj(~0jj + ~II&011.0+ 4 II4,I,0 

(5.16) 
+ 11101112 + 16T2r . 

aTn 
- 

1 
4 ' = n= 1 

I?0 l2 + ?llioO+Ch[i tl -l, r- 1 t1 2,r 1] 

Ilat2ll, 1 ] ) 2 
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Hence taking the maximum in (5.16), 

~Tau a a2u 1 
III0&IIO< 1(7) 5 Il o hL at ooo r atr 2r- J 

(5.17) r[ 
I 

2,r- i 

+ -T [1lvl _1 a4U112 

Now from (3.8) 

(5.18) 11k Ilo < lle? 110 + 11110110 <C7hrllu lIr; 

hence 
111111100 < 1117111 + 111k111. 

?C h r Illlulll ? au a2u 2r1 
A r at oo,r- 1 

+ 
7t 2,r- l 

+ r2[ IlzlOU + I1W11 ,- ] YtT00 
? 2,11 

The result (5.3) now follows. 
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